Alarm System for Credit Losses Impairment under IFRS 9

Yahia Sahli α Pierre Théond α,β

α ISFA - Université Lyon 1

β Galea & Associés

March 25, 2015
Contents

1 Motivation

2 Credit Losses Impairment

3 Credit Risk Monitoring

4 Empirical Analysis
Sommaire

1 Motivation
 - Framework
 - Some figures
 - Overview of IAS 39 impairment disposals

2 Credit Losses Impairment

3 Credit Risk Monitoring

4 Empirical Analysis
1.1. Framework

- Post Financial crisis IFRS standards
- Since equity securities have to be classified as Fair Value through P&L, impairment losses stand for financial instruments which are eligible to amortized cost (or Fair Value through OCI)
- Moving from an *incurred* approach toward an *expected* one
- New rules inspired by loan pricing and risk management: what about non-banking financial institutions (e.g. insurers with bonds)?
1.2. Some figures

Table: Figures from consolidated financial reports 2013. Debt instruments measured at fair value through other comprehensive incomes (FVOCI), at amortized cost and at fair value through profit or loss (FVPL) are reported. The bottom panel depicts the percentage of debt instruments over the total financial investments detained by the considered companies.

<table>
<thead>
<tr>
<th>Total financial investments</th>
<th>Allianz 411.02</th>
<th>Axa 450.04</th>
<th>CNP Assurances 339.56</th>
<th>Generali 342.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debt instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVOCI</td>
<td>359.73</td>
<td>319.62</td>
<td>209.52</td>
<td>212.679</td>
</tr>
<tr>
<td>Amortized Cost</td>
<td>4.65</td>
<td>6.52</td>
<td>0.60</td>
<td>59.003</td>
</tr>
<tr>
<td>FVPL</td>
<td>2.37</td>
<td>34.24</td>
<td>30.32</td>
<td>8.691</td>
</tr>
<tr>
<td>Total</td>
<td>366.74</td>
<td>360.37</td>
<td>240.44</td>
<td>280.37</td>
</tr>
<tr>
<td></td>
<td>89%</td>
<td>80%</td>
<td>71%</td>
<td>82%</td>
</tr>
</tbody>
</table>
1.3. Overview of IAS 39 impairment disposals

<table>
<thead>
<tr>
<th>Category</th>
<th>HTM</th>
<th>AFS</th>
<th>HFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible securities</td>
<td>Bonds</td>
<td>Bonds</td>
<td>Others (stock, funds, etc.)</td>
</tr>
<tr>
<td>Valuation</td>
<td>Amortized cost</td>
<td>Fair Value (through OCI)</td>
<td>Fair Value (P&L)</td>
</tr>
<tr>
<td>Impairment principle</td>
<td>Event of proven loss</td>
<td>Event of proven loss</td>
<td>Significant or prolonged fall in the fair value</td>
</tr>
<tr>
<td>Impairment trigger</td>
<td>Objective evidence resulting from an incurred event (cf. IAS 39 §59)</td>
<td>Two criteria (non-cumulative : cf. IFRIC July 2009) : significant or prolonged loss in the FV</td>
<td>NA</td>
</tr>
<tr>
<td>Impairment Value</td>
<td>In result : difference between reported value (before impairment) and the FV</td>
<td>In result : difference between reported value (before impairment) and the FV</td>
<td>NA</td>
</tr>
<tr>
<td>Reversal of the impairment</td>
<td>Possible in specific cases</td>
<td>Possible in specific cases</td>
<td>Impossible</td>
</tr>
</tbody>
</table>
Sommaire

1 Motivation

2 Credit Losses Impairment
 - Overview of IFRS 9 disposals (measurement)
 - Expected Credit Losses

3 Credit Risk Monitoring

4 Empirical Analysis
2.1. Overview of IFRS 9 disposals (measurement)

Classification & Measurement of financial assets

* Presentation option for equity investments to present fair value changes in OCI
2.2. Expected Credit Losses

Overview of the general impairment model
2.2. Expected Credit Losses I

To assess credit risk, the entity should consider the likelihood of not collecting some or all of the contractual cash-flows over the remaining maturity of the financial instrument, i.e. to assess the evolution of the probability of default (and not of the loss-given default for example).

The standard did not impose a particular method for this assessment but it included the two following operational simplifications:

- For financial instruments with 'low-credit risk' at the reporting date, the entity should continue to recognize 12-month ECL;
- there is a rebuttable presumption of significant increase in credit risk when contractual payments are more than 30 days past due.
2.2. Expected Credit Losses II

In practice, most credit risk watchers rely on ratings released by major agencies, e.g. Moody’s, Standard & Poors and Fitch among others. There have been strong criticism about the accuracy of ratings, for example:

- lack of timeliness (cf. Cheng and Neamtiu (2009) and Bolton et al. (2012))
- too slowly downgrading (cf. Morgenson (2008))
- inability to predict some high-profile bankruptcies (cf. Buchanan (2009))
Sommaire

1 Motivation

2 Credit Losses Impairment

3 Credit Risk Monitoring
 - Main idea
 - Modelling
 - Market-Implied Default Intensities
 - Quickest detection problem

4 Empirical Analysis
3.1. Main idea

In order to assess a significant increase in credit risk, we propose a monitoring procedure based on implied default intensities of CDS prices.

It consists in modelling CDS prices and an alarm system based on quickest detection procedure (cf. Poor and Hadjiliadis (2009)).
3.2. Modelling I

Letting τ be the random time of the default event, the present value of the CDS fixed leg, denoted $\text{FIL}(T_0, [T], T, S_0)$, is given by

$$\text{FIL}(T_0, [T], T, S_0) = S_0 \sum_{j=0}^{n} B(T_0, T_i) \alpha_j 1_{\tau > T_j},$$

where $B(t, T)$ is the price at time t of a default-free zero-coupon bond maturing at T, i.e. $B(t, T) = \exp \left(- \int_t^T r_s ds \right)$ and r_s is the risk-free interest rate.
3.2. Modelling II

Similarly, the present value of the floating leg $\text{FLL}(T_0, [T], T, L)$, that is the payment of the protection seller contingent upon default, equals

$$\text{FLL}(T_0, [T], T, L) = L_{GD} \sum_{i=0}^{n} B(T_0, T_j)1_{\tau \in [T_{j-1}, T_j]},$$

where L_{GD} is the loss given default being the fraction of loss over the all exposure upon the occurrence of a credit event of the reference company.
3.2. Modelling III

We denote by $CDS(T_0, [T], T, S_t, L_{GD})$ the price at time T_0 of the above CDS. The pricing mechanism for this product relies on the risk-neutral probability measure Q, the assumptions on interest-rate dynamics and the default time τ. Accordingly, the price is given as follows

$$[\mathbb{E}] CDS(T_0, [T], T, S_t, L_{GD}) = \mathbb{E} \left[S_0 \sum_{j=0}^{n} B(T_0, T_j) \alpha_j 1_{\tau > T_j} \right] - \mathbb{E} \left[L_{GD} \sum_{j=0}^{n} B(T_0, T_j) 1_{\tau \in [T_{j-1}, T_j]} \right],$$

where \mathbb{E} denotes the risk neutral expectation (under probability measure Q). For a given maturity, the market quote convention consists in the
3.2. Modelling IV

rate S_0 being set so that the fixed and floating legs match at inception. Precisely, the price of the CDS is obtained as the fair rate S_t such that

$$\text{CDS}(T_0, [T], T, S_0, L_{GD}) = 0,$$

which yields to the following formulation of the premium

$$S_0 = L_{GD} \frac{\sum_{j=0}^{n} B(T_0, T_j) \mathbb{E}[1_{\tau \in [T_{j-1}, T_j]}]}{\sum_{j=0}^{n} B(T_0, T_j) \alpha_j \mathbb{E}[1_{\tau > T_j}]}.$$ \hspace{1cm} (3)

Note that the two expectations in the above equation can be expressed using the risk-neutral probability \mathbb{Q} as follows:

$$\mathbb{E}[1_{\tau \in [T_{j-1}, T_j]}] = \mathbb{Q}(T_{j-1} \leq \tau \leq T_j) \quad \text{and} \quad \mathbb{E}[1_{\tau > T_j}] = \mathbb{Q}(\tau \geq T_j).$$
3.3. Market-Implied Default Intensities

The real-world DI are estimated from statistics on average cumulative default rates published by Moody’s between 1970 and 2003. The implied DI are estimated from market prices of the US Bonds market.

Table: Average real world and market-implied default intensities based on Bonds market

<table>
<thead>
<tr>
<th>Rating</th>
<th>Actual DI</th>
<th>Implied DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>0.04%</td>
<td>0.67%</td>
</tr>
<tr>
<td>Aa</td>
<td>0.06%</td>
<td>0.78%</td>
</tr>
<tr>
<td>A</td>
<td>0.13%</td>
<td>1.28%</td>
</tr>
<tr>
<td>Baa</td>
<td>0.47%</td>
<td>2.38%</td>
</tr>
<tr>
<td>Ba</td>
<td>2.40%</td>
<td>5.07%</td>
</tr>
<tr>
<td>B</td>
<td>7.49%</td>
<td>9.02%</td>
</tr>
<tr>
<td>Below B</td>
<td>16.90%</td>
<td>21.30%</td>
</tr>
</tbody>
</table>
3.4. Quickest detection problem I

We assume that the time varying intensity λ_t obeys to the following dynamics

$$\log \lambda_t = \mu + \sigma \epsilon_t,$$ \hspace{1cm} (4)

where, ϵ_t is a a zero-mean homoscedastic white noise and μ and σ are some constant parameters. The trend μ is assumed to be deterministic and known. With credit quality deterioration in mind, the intensity λ_t (in logarithmic scale) may change its drift μ in the future at an unknown time θ referred to, henceforth, as a change-point. We assume that the change-point θ is fully inaccessible knowing the pattern of λ_t. It can be either ∞ (in case of absence of change) or any value in the positive integers.
3.4. Quickest detection problem II

After the occurrence time θ the λ_t’s evolve as follows:

$$\log \lambda_t = \bar{\mu} + \sigma \epsilon_t,$$

where $\bar{\mu}$ is the new drift, which is assumed to be deterministic and known. The quickest detection objective imposes that t^c_d must be as close as possible to θ. Meanwhile, we balance the latter with a desire to minimize false alarms.

For this detection strategy, it is shown that the cumulative sums (cusum for short) is optimal.
3.4. Quickest detection problem III

More formally, if one fix a given false alarm to π, which stands for the time until a false alarm, the stopping time $t^c_d = \inf\{t \geq 0; V_t \geq m\}$ is optimal for triggering an alarm. Here, V_t is the process given by

$$V_t = \max_{1 \leq s \leq t} \left(\prod_{k=s}^{t} L(\log \lambda_k) \right), \quad V_0 = 0,$$

where $x \rightarrow L(x)$ is the likelihood ratio function. In view of our model the likelihood function $L(x)$ is given as follows

$$L(x) = \frac{\bar{\mu} - \mu}{\sigma} \left(x - \frac{\bar{\mu} - \mu}{2\sigma} \right).$$
3.4. Quickest detection problem IV

- The log-likelihood process L works as a measure of the adequacy of the observation with the underlying model in 4.

- The process V can be interpreted as a sequential cumulative log-likelihood. The latter is:
 - equal to 0 when the incoming information of the log-intensity does not suggest any deviation from the model in (4)
 - greater than 0, we can interpret this as a deviation from the model in (4). This means that the 'real' model stands in between (4) and (5).

- In order to declare that the intensity is evolving with respect to the model in (5) one needs a constraint in order to characterize the barrier m. This is typically achieved by imposing that the optimal time to raise a false alarm when no change occurs should be postponed as long as possible.
Sommaire

1 Motivation

2 Credit Losses Impairment

3 Credit Risk Monitoring

4 Empirical Analysis
 ■ Educational example : AIG
 ■ Other illustrations
 ■ Overview of the procedure
4.1. Educational example : AIG I

Figure: CDS spreads between January 1st, 2005 and December 31st, 2010 on AIG for different maturities : 1-year (red), 5-year (blue) and 10-year (black).
4.1. Educational example : AIG II

Figure: Time-series plot of AIG’s market implied intensity process for different CDS maturities: 1-year (red), 5-year (blue) and 10-year (black)
4.1. Educational example : AIG III

Figure: The evolution of the process V since the initial recognition in September 1, 2006.
4.2. Other illustrations

Table: The grade change column corresponds to the time the entity’s grade witnessed the main downgrade during the period of interest.

<table>
<thead>
<tr>
<th>Industrials</th>
<th>Main Change</th>
<th>Alarm</th>
<th>Financials</th>
<th>Grade Change</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing co.</td>
<td>3/15/06 (A2)</td>
<td>—</td>
<td>HSBC</td>
<td>3/9/09 (A1)</td>
<td>1/21/08</td>
</tr>
<tr>
<td>Siemens</td>
<td>—</td>
<td>—</td>
<td>Allianz</td>
<td>8/26/04 (Aa3)</td>
<td>3/17/08</td>
</tr>
<tr>
<td>Alstom</td>
<td>5/7/08 (Baa1)</td>
<td>—</td>
<td>UBS</td>
<td>7/4/08 (B-)</td>
<td>7/27/07</td>
</tr>
</tbody>
</table>

Technology

Google Inc.	7/5/10 (Aa2)	—	AXA	3/19/03 (A2)	—
Cap Gemini	not rated	—	Daxia	10/01/08 (C-)	7/20/07
Alcatel-Lucent	11/7/07 (Ba3)	—	Merill Lynch	not rated	9/17/08

Consumer Services

Pearson	12/2/98 (Baa1)	—	Nestléd	8/15/07 (Aa1)	12/4/07
Carrefour	3/23/11 (Baa1)	8/9/11	Coca Cola co.	8/21/92 (Aa3)	—
Marks & Spencer	7/13/04 (Baa2)	—	Procter & Gamble	10/19/01 (Aa3)	—

Utilities

| Iberdrola | 6/15/12 (Baa1)| 9/30/11| Schlumberger | 9/22/03 (A1) | — |
| SUEZ | 8/18/08 (Aa3)| — | Repsol | 5/16/05 (Baa1)| — |

Healthcare

| Sanofi | 2/18/11 (A2) | 3/7/08| Basic Materials | 11/6/12 (Ba1)| — |
| Pfizer inc. | 3/11/09 (Aa2)| — | Solvay | 9/5/11 (Baa1)| — |
4.3. Overview of the procedure

Figure: Summary of the main proposals. The time t refers to the current reporting date.

This approach should lead to further examination of bond issuers for which alarm sounded. The effective impairment should rely on closer investigation of their financial position, e.g. financial analyses and non-quantitative information.
Conclusion & Future Works

- Refinement to avoid *frequent false alarms*
- Considering more CDS examples
- Bayesian framework, where:
 - The sequential probability of change of regime is derived using the *market implied matrix transition probabilities*
 - Refined approximation of the post-change average DI
- Portfolio assessment of expected credit losses;
DéCAF - What else?

Work in progress:

- Portfolio assessment of expected credit losses (Y. Salhi & P. Théron);
- Fol. of Azzaz et al. (2014): multi-period framework for equity securities at FVOCI (A. Bienvenue, S. Loisel & P. Théron);
- Other stock price models: regime-switching, Levy, etc. (S. Loisel & P. Théron);
Some references I

Some references II

Some references III
