Some characteristics of an equity security next-year impairment

Pierre Thérond ptherond@galea-associes.eu | pierre@therond.fr

Galea & Associés | ISFA - Université Lyon 1

May 27, 2014

通 ト イ ヨ ト イ ヨ ト

3

References

Presentation based of the joint work :

 J. Azzaz, S. Loisel & P.-E. Thérond (2014) Some characteristics of an equity security next-year impairment, *Review of Quantitative Finance and Accounting*, (DOI : 10.1007/s11156-014-0432-x)

Work supported by :

- Reserach Chair Management de la modélisation (ISFA BNP Paribas Cardif) : http://isfa.univ-lyon1.fr/m2a
- DéCAF project with financial support of Institut Europlace de Finance Louis Bachelier (EIF) : http://isfa.univ-lyon1.fr/decaf

通 ト イ ヨ ト イ ヨ ト

Contents

1 Motivation

2 Formalisation

3 Main results

4 Illustrations

Congrès de l'Association Francophone de Comptabilité, 27 mai 2014 Equity security next year impairment | P.E. Thérond

イロト イボト イヨト イヨト

æ

Motivation

Formalisation Main results Illustrations What's next? Références Framework Some figures Overview of IAS 39 impairment disposals Some figures (foll.)

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Sommaire

- Framework
- Some figures
- Overview of IAS 39 impairment disposals
- Some figures (foll.)

2 Formalisation

3 Main results

4 Illustrations

Motivation

Formalisation Main results Illustrations What's next? Références Framework

Some figures Overview of IAS 39 impairment disposals Some figures (foll.)

イロト イポト イヨト イヨト

3

1.1. Framework

- Present standards
- Financial reporting place in the management and development of financial institutions
- Risk (y.c. ORSA for insurance companies)

Motivation

Formalisation Main results Illustrations What's next? Références Framework Some figures Overview of IAS 39 impairment disposals Some figures (foll.)

イロト イボト イヨト イヨト

э

1.2. Some figures

Table : Financial investments of some insurers in 2011

(Mds €)	Allianz	Axa	CNP Assurances	Generali
Balance Sheet Size	641.472	730.085	321.011	423.057
Total equity	47.253	50.932	13.217	18.120
AFS Assets	333.880	355.126	231.709	175.649
AFS (Funds and equity se- curities)	26.188	20.636	27.618	20.53

Framework Some figures **Overview of IAS 39 impairment disposals** Some figures (foll.)

1.3. Overview of IAS 39 impairment disposals

C

Category	НТМ	AFS	5	HFT
Eligible se- curities	Bonds	Bonds	Others (stock, funds, etc.)	Everything
Valuation	Amortized cost	Fair Valı	ue (through OCI)	Fair Value through P&L
Impairment principle	Event of proven loss	Event of pro- ven loss	Significant or prolonged fall in the fair value	NA
Impairment trigger	Objective evidence re curred event (cf. IAS		Two critera (non- cumulative : cf. IFRIC July 2009) : significant or prolonged loss in the FV	NA
Impairment Value	Difference between the amortized cost and the revised value of future flows discounted at the original interest rate		ce between reported va- ment) and the FV	NA
Reversal of the impair- ment	Possible in specific cases Francophone de Comptabilité, 2	Possible in specific cases	Impossible	

Framework Some figures **Overview of IAS 39 impairment disposals** Some figures (foll.)

きょうきょう

1.3. Overview of IAS 39 impairment disposals

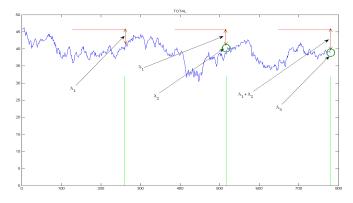


Figure : Illustration : Total Stock price, 2010-2012 ($\alpha = 0.3$, s = 0.5y)

Framework Some figures **Overview of IAS 39 impairment disposals** Some figures (foll.)

1.3. Overview of IAS 39 impairment disposals

Table : Equity instruments impairment parameters used by some financial institutions (2011)

Group	Parameter <i>signi-</i> ficant	Paramètre <i>pro-</i> <i>longed</i> (months)	Additional crite- rion
Allianz	0.2	9	
Axa	0.2	6	
BNP Paribas	0.5	24	0.3 12 months
CNP	0.5	36	0.3 6 months
Crédit Agricole	0.4	Ø	0.2 6 months
Generali	0.5	36	
Groupama	0.5	36	
ING	0.25	6	
Scor	0.5	24	0.3 12 months
Société Générale	0.5	24	·

₹ 9Q0

・ 同 ト ・ ヨ ト ・ ヨ ト

Framework Some figures Overview of IAS 39 impairment disposals Some figures (foll.)

イロト イポト イヨト イヨト

3

1.4. Some figures (foll.)

Table : P&L and impairment losses resulting from equity securities classified as AFS 2011

(M€)	Allianz	Axa	CNP Assurances	Generali
Result	2804	4516	1141	1153
Impairment losses on AFS funds and equity securities	-2487	-860	-1600	-781

Notations Impairment triggers Probability and amount of impairment loss

< 回 > < 回 > < 回 >

э

Sommaire

1 Motivation

2 Formalisation

- Notations
- Impairment triggers
- Probability and amount of impairment loss

3 Main results

4 Illustrations

Notations Impairment triggers Probability and amount of impairment loss

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

2.1. Notations

Main notations :

- $S = (S_t)_{t \ge 0}$ the stock price process
- t_a the acquisition date
- $\lambda = (\lambda_s)_{s \in \{[t_a]+1, [t_a]+2, ...\}}$ the successive impairment losses (may be nil)
- $\Lambda(S, t_a, t) = \sum_{s = \lfloor t_a \rfloor + 1}^t \lambda(S, t_a, s)$ the sum of pas impairment losses
- $\Omega(S, t_a, t)$ the amount in OCI resulting from S at time t

At each reporting date t, the balance sheet equilibrium property leads to :

$$S_t - S_{t_a} = \Omega(S, t_a, t) + \Lambda_t.$$

Notations Impairment triggers Probability and amount of impairment loss

医下颌 医下颌

2.2. Impairment triggers

A necessary condition for considering an impairment loss at time t+1 is :

$$\begin{cases} S_{t+1} \leq (1-\alpha)S_{t_s}, \text{or;} \\ \forall u \in]t+1-s, t+1], S_u \leq S_{t_s}, \end{cases}$$

where α and *s* are determined by the reporting entity. α represents the relative level of fall in fair value since the acquisition date corresponding to *significant* decline, *s* represents the minimum period before the financial reporting date that leads to consider that the decline is *prolonged*.

Moreover, there is an effective impairment loss if , in addition :

$$S_{t+1} \leq S_{t_a} - \Lambda_t$$
.

Then, the impairment loss λ_{t+1} is given by :

$$\lambda_{t+1} = S_{t_a} - \Lambda_t - S_{t+1} = K_t - S_{t+1}$$

Notations Impairment triggers Probability and amount of impairment loss

э.

2.3. Probability and amount of impairment loss

Let us denote J_{t+1} the probability of an effective impairment loss at reporting date t+1 :

$$J_{t+1} = (S_{t+1} \leq (1-\alpha)S_{t_a}, S_{t+1} \leq K_t) \bigcup \left(\max_{\substack{t+1-s \leq u \leq t+1}} S_u \leq S_{t_a}, S_{t+1} \leq K_t \right),$$

By introducing $m_t = \min((1 - \alpha)S_{t_a}, K_t)$, we have :

$$\mathbb{P}_t\left[J_{t+1}\right] = \mathbb{P}_t\left[S_{t+1} \le m_t\right] + \mathbb{P}_t\left[\max_{t+1-s \le u \le t+1} S_u \le S_{t_s}, S_{t+1} \le K_t\right] \\ - \mathbb{P}_t\left[\max_{t+1-s \le u \le t+1} S_u \le S_{t_s}, S_{t+1} \le m_t\right].$$

Notations Impairment triggers Probability and amount of impairment loss

くぼう くほう くほう

3

2.3. Probability and amount of impairment loss

Similarly, the impairment loss at time t + 1 is given by :

$$\lambda_{t+1} = (\mathcal{K}_t - \mathcal{S}_{t+1})^+ \mathbf{1} \left\{ \max_{t+1-s \leq u \leq t+1} \mathcal{S}_u \leq \mathcal{S}_{t_a} \cup \mathcal{S}_{t+1} \leq (1-\alpha) \mathcal{S}_{t_a} \right\},$$

with $K_t = S_{t_a} - \Lambda_t$. This expression can be expressed as a sum of three terms :

$$\lambda_{t+1} = X_{t+1} + Y_{t+1} - Z_{t+1},$$

avec

$$\begin{array}{l} \mathbf{I} \quad X_{t+1} = (K_t - S_{t+1})^+ \mathbf{1} \left\{ \max_{t+1-s \leq u \leq t+1} S_u \leq S_{t_a} \right\}, \\ \mathbf{I} \quad Y_{t+1} = (K_t - S_{t+1})^+ \mathbf{1} \left\{ S_{t+1} \leq (1-\alpha) S_{t_a} \right\}, \text{ and} \\ \mathbf{I} \quad Z_{t+1} = (K_t - S_{t+1})^+ \mathbf{1} \left\{ \max_{t+1-s \leq u \leq t+1} S_u \leq S_{t_a} \right\} \mathbf{1} \left\{ S_{t+1} \leq (1-\alpha) S_{t_a} \right\}. \end{array}$$

Notations Impairment triggers Probability and amount of impairment loss

くぼう くほう くほう

3

2.3. Probability and amount of impairment loss

The three terms could be seen as payoffs of options of S :

- the first one : a *rear-end up-and-out* put option (cf. Hui (1997))
- the second one : a traditional European put option,
- the third one corresponding to the sum of a *rear-end up-and-out* put option and a compensation amount.

The main objective of our work is to exhibit some characteristics of future impairment losses (with a one-year horizon) for risk management purposes (prediction, risk measures and decisions), the following results are obtained :

- using option theory;
- under the real-world probability measure.

Model and results overview Main results

イロト イボト イヨト イヨト

æ

Sommaire

2 Formalisation

- 3 Main results
 - Model and results overview
 - Main results

4 Illustrations

Model and results overview Main results

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

3.1. Model and results overview

Considering a Black & Scholes framework (i.e. a geometric brownian motion), we obtain closed formulas for (one-year horizon) :

- the probability that some impairment occurs,
- the expectation of impairment losses,
- the cumulative distribution function (c.d.f.) of impairment losses.

Model and results overview Main results

3.2. Main results

Theorem (Impairment probability)

The probability to recognize an impairment at future time t + 1, given the information \mathcal{F}_t at time t, is given by

$$\mathbb{P}_{t}\left[J_{t+1}\right] = \left(\frac{S_{t_{o}}}{S_{t}}\right)^{k_{1}-1} \left[\Psi_{\rho}\left(C, D(K_{t})\right) - \Psi_{\rho}\left(C, D(m_{t})\right)\right] \\ + \Phi\left(-A(K_{t})\right) + \Psi_{\rho}\left(B, A(K_{t})\right) - \Psi_{\rho}\left(B, A(m_{t})\right)$$

where Φ denotes the c.d.f. of a standard normal distribution, and Ψ_{ρ} is the bivariate normal distribution function : for all x, y, $\Psi_{\rho}(x, y) = \mathbb{P}_t [X \le x, Y \le y]$ where (X, Y) is a Gaussian vector with standard marginals and correlation ρ .

Model and results overview Main results

イロト イロト イヨト イヨト

2

3.2. Main results

Other terms, for
$$x \in \{m_t, K_t\}$$
:

$$A(x) = \frac{\ln(S_t/x) + \mu}{\sigma} - \frac{\sigma}{2}, A'(x) = A(x) + \sigma,$$

$$B = \frac{\ln(S_t/S_{t_3}) + \mu(1-s)}{\sigma\sqrt{(1-s)}} - \frac{\sigma\sqrt{(1-s)}}{2}, B' = B + \sigma\sqrt{(1-s)},$$

$$C = \frac{\ln(S_{t_3}/S_t) + \mu(1-s)}{\sigma\sqrt{(1-s)}} - \frac{\sigma\sqrt{(1-s)}}{2}, C' = C + \sigma\sqrt{(1-s)},$$

$$D(x) = \frac{\ln(S_{t_3}^2/S_tx) + \mu}{\sigma} - \frac{\sigma}{2}, D'(x) = D(x) + \sigma,$$

$$k_1 = \frac{2\mu}{\sigma^2},$$

Model and results overview Main results

< 回 > < 三 > < 三 > -

3.2. Main results

Theorem (Impairment loss expectation)

The expectation of next-year impairment, given the information \mathcal{F}_t at time t, is given by

$$\begin{split} \mathbb{E}_{t} \left[\lambda_{t+1} \right] &= S_{t} e^{\mu} \left(\frac{S_{t_{3}}}{S_{t}} \right)^{k_{1}-1} \left[\Psi_{-\rho} \left(C', -D'(K_{t}) \right) - \Psi_{-\rho} \left(C', -D'(m_{t}) \right) \right] \\ &+ S_{t} e^{\mu} \left[\Psi_{\rho} \left(-B', -A'(m_{t}) \right) - \Phi \left(-A'(m_{t}) \right) - \Psi_{\rho} \left(-B', -A'(K_{t}) \right) \right] \\ &+ K_{t} \left[\Psi_{\rho} \left(-B, -A(K_{t}) \right) + \Phi \left(-A(m_{t}) \right) - \Psi_{\rho} \left(-B, -A(m_{t}) \right) \right] \\ &+ \left(K_{t} - m_{t} \right) \left(\frac{S_{t_{3}}}{S_{t}} \right)^{k_{1}-1} \left[\Phi \left(-D(m_{t}) \right) - \Psi_{\rho} \left(-C, -D(m_{t}) \right) \right] \\ &- K_{t} \left(\frac{S_{t_{3}}}{S_{t}} \right)^{k_{1}-1} \Psi_{-\rho} \left(C, -D(K_{t}) \right) + m_{t} \left(\frac{S_{t_{3}}}{S_{t}} \right)^{k_{1}-1} \Psi_{-\rho} \left(C, -D(m_{t}) \right), \end{split}$$

where all constant numbers, variables and parameters are defined in Theorem 1.

Model and results overview Main results

通 ト イ ヨ ト イ ヨ ト

э

3.2. Main results

Two sensitivity results :

Theorem (Probability sensitivity)

The probability is decreasing according to α , μ , Λ and s. Moreover, the probability is convex according to α , μ , μ and s.

Theorem (Expectation sensitivity)

The expected impairment loss is decreasing according to α , μ , Λ and s, non-decreasing with σ . Moreover, it is convex according to α , μ , σ and Λ , and concave with s.

Model and results overview Main results

・ 同 ト ・ ヨ ト ・ ヨ ト

3

3.2. Main results

Theorem (Cumulative distribution function of impairment loss)

The cumulative distribution function of the next-year impairment loss, given the information \mathcal{F}_t available at time t, is given by :

$$\mathbb{P}_{t} [\lambda_{t+1} \leq I] = \begin{cases} (1 - \mathbb{P}_{t} [J_{t+1}]) + \Phi (A(K_{t} - I)) - \Phi (A(K_{t})) \\ + \left(\frac{S_{t_{2}}}{S_{t}}\right)^{K_{1} - 1} [\Psi_{\rho} (C, D(K_{t})) - \Psi_{\rho} (C, D(K_{t} - I))] \\ + \Psi_{\rho} (B, A(K_{t})) - \Psi_{\rho} (B, A(K_{t} - I)) &, 0 \leq I \leq K_{t} - m_{t}, \\ \Phi (A(K_{t} - I)) &, K_{t} - m_{t} < I \leq K_{t}, \end{cases}$$
(1)

with the same notations and variables as in 1.

Sensitivities Illustrations

Sommaire

1 Motivation

2 Formalisation

3 Main results

4 Illustrations

- Sensitivities
- Illustrations

イロト イヨト イヨト

æ

Sensitivities Illustrations

4.1. Sensitivities

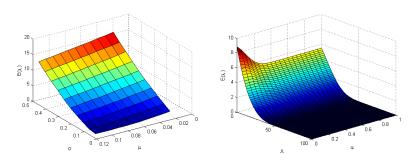


Figure : Average next-year impairment as a function of μ and σ (left), and of α and Λ (right).

-∢ ⊒ →

э

Sensitivities Illustrations

4.2. Illustrations

Table : One-year expected loss for TOTAL according to past impairment losses

St	٨	$\mathbb{P}_t\left[J_{t+1}\right]$	$\mathbb{E}_t \left[\lambda_{t+1} ight]$	<i>VaR</i> (80%)	VaR(95%)	VaR(99.5%)
38.42	2.28975 4.5795 22.8975	0.5509 0.5075 0.0078	4.0699 3.3007 0.0124	10.7697 8.4799	16.2236 13.9338	21.402 19.1123 0.7943
	34.34625	0.0078	0.0124	0 0	0	0.7943

イロト イポト イヨト イヨト

э.

Total. $S_{t_a} = 45.795$

Sensitivities Illustrations

4.2. Illustrations

Table : Impact of impairment parameters (Axa et Generali) for five stocks

		Axa	Generali		
	$\mathbb{P}_t\left[J_{t+1}\right]$	$\mathbb{E}_t \left[\lambda_{t+1} \mid J_{t+1} \right]$	$\mathbb{P}_t\left[J_{t+1}\right]$	$\mathbb{E}_t \left[\lambda_{t+1} \mid J_{t+1} \right]$	
BNP Paribas	0.3331	21.3545	0.0698	33.8002	
Bouygues	0.2762	10.3336	0.011	20.3283	
Carrefour	0.2851	8.7095	0.0162	16.4673	
Pernod Ricard	0.2374	13.1027	0.00076	32.1938	
Total	0.2365	9.7935	0.00069	24.2181	

イロト イボト イヨト イヨト

æ

What's next?

Work in progress (DéCAF project) :

- multi-period framework;
- other stock price models;
- portfolio assessment;
- expected credit losses (IFRS 9).

()

Some refernces

- Batens, N. (2007). Modeling equity impairments. Belgian Actuarial Bulletin, 7(1):24–33.
- Carr, P. (1995). Two extensions to barrier option valuation. *Applied Mathematical Finance*, 2 :173–209.
- Carr, P. and Chou, A. (1997a). Breaking barriers : Static hedging of barrier securities. *Risk.* October.
- Carr, P. and Chou, A. (1997b). Hedging complex barrier options. Working paper.
- Chuang, C.-S. (1996). Joint distribution of Brownian motion and its maximum, with a generalization to correlated BM and applications to barrier options. *Statistics & Probability Letters*, 28 :81 – 90.
- Hui, C. H. (1997). Time-dependent barrier option values. The Journal of Futures Markets, 17(6) :667–688.
- Rubinstein, M. and Reiner, E. (1991a). Breaking down the barriers. *Risk Magazine*, 8 :28–35.

э.